

base effected partial conversion into the respective trans isomers, VIII and VI.

Since there is no stereochemical crossover in the cyclization of the two isomeric acetals, the process is stereospecific and must either be synchronous or involve cationic intermediates that maintain their stereochemical integrity.

> William S. Johnson, Arne van der Gen, Johann J. Swoboda Department of Chemistry, Stanford University Stanford, California 94305 Received October 10, 1966

Fluorine Oxidation of Tetravalent Uranium and Neptunium to the Pentavalent State¹

Sir:

Fluorine oxidation of uranium tetrafluoride in a slurry of anhydrous liquid HF has been found to be a new and useful synthesis for pentavalent uranium compounds. We find that fluorine oxidation of UF_4 dispersed in liquid anhydrous HF proceeds readily to UF_5 but then goes only very slowly to UF_6 . When both alkali fluoride and UF4 are present in liquid HF, fluorine oxidation halts at U(V) in the form of the soluble UF_6^- ion. This technique is especially useful in the preparation of pure MUF₆ compounds, avoiding the separate preparation and handling of UF_{5} .

The pentafluorides of the heavier actinides, neptunium and plutonium, have not been prepared although the tetra- and hexafluorides of both are well known.² Therefore, after successfully preparing UF₅ by the method just described, we attempted to extend the technique to neptunium. Although oxidation of Np(IV) to Np(V) was observed in cesium hydrogen fluoride solution, NpF₅ itself could not be isolated.

Fluorine Oxidation of U(IV) to U(V). (a) We prepared UF₅ from UF₄ by stirring a suspension of highsurface-area UF₄ in liquid anhydrous HF at 25° under 10 psig of F_2 . (High-surface-area UF₄ was made by dehydrating $UF_4 \cdot 2.5H_2O$ in a stream of gaseous H_2 and HF for 2 hr at 200° followed by 3 hr at 450°.) The oxidation on a 3-5-g scale essentially halted at β -UF₅ in 1–4 hr, and many more hours were required before significant quantities of UF_6 were formed.

(b) A stirred slurry of CsF and UF₄ (1:1 mole ratio) in liquid HF reacted smoothly with F_2 at 10 psig and 25°, yielding a clear blue solution of $CsUF_6$. (A Teflon-coated bar magnet is convenient for stirring.) On evaporation of HF, blue crystals of pure CsUF₆ were obtained; with RbF, light yellow RbUF₆ crystals were deposited.³ The UF_4 need not be of high surface area since the reaction proceeds readily to completion, probably because the MUF₆ reaction products are soluble.

(1) This work was sponsored by the U. S. Atomic Energy Com-

(3) G. D. Sturgeon, R. A. Penneman, F. H. Kruse, and L. B. Asprey, Inorg. Chem., 4, 748 (1965).

To avoid weighing hygroscopic, heavy alkali fluorides, the nonhygroscopic chlorides can be substituted. In this case, HF is condensed onto the alkali chloride- UF_4 mixture and the HCl, which is formed when the mixture is warmed, is vented through a trap. After this step, F_2 is admitted and the suspension is stirred. We use weighable, translucent Kel-F tubes (with a flared end for connection to a Monel line) to observe the course of the reaction. Five-gram quantities of UF₄ are conveniently oxidized to soluble MUF_6 in 30-45 min at 25°. Caution: Before admitting fluorine, any hydrogen frequently present in the tank of HF must be removed; this is done readily by condensing the HF and pumping off gases volatile at liquid nitrogen temperatures.

Preparation of Np(V). At 25°, a slurry of NpF₄ (0.17 g) in HF was not oxidized to NpF₅ by 10 psig of F_2 . However, when 10 g of CsF was added and the excess HF pumped off, the green NpF₄ dissolved in the warm CsF·2HF melt (mp $\sim 50^{\circ}$). Neptunium(IV) was then oxidized by F_2 at 70° to a soluble, magentacolored Np(V) fluoride complex. The absorption spectrum of Np(V) in this cesium diffuoride melt closely resembled that of pure $C_{sNpF_{6}}$; in addition, $C_{sNpF_{6}}$ was identified as the pink solid deposited from this solution.⁴ When several milliliters of liquid HF was recondensed on this Np(V) material, disproportionation took place leaving green NpF₄ behind and yielding orange, volatile NpF₆. This behavior contrasts with that of $CsUF_6$ which is completely stable in anhydrous HF.

(4) L. B. Asprey, T. K. Keenan, R. A. Penneman, and G. D. Sturgeon, Inorg. Nucl. Chem. Letters, 2, 19 (1966).

> L. B. Asprey, R. A. Penneman University of California, Los Alamos Scientific Laboratory Los Alamos, New Mexico 87544 Received October 10, 1966

The Basic Properties of Tetrafluorodiphosphine. The Synthesis of Tetrafluorodiphosphine Borane

Sir:

In recent papers, reactions of the new compound P_2F_4 with some Brønsted-Lowry acids of general formula HX, to give products of the forms F_2PH^{1a} and F₂PX, were mentioned very briefly.^{1b} On the basis of present evidence, a transition-state complex of the form F_2PPF_2 HX could account for the products, or a free-radical mechanism involving F_2P radicals would be reasonable. A cleavage of the P-P bond to give F_2POPF_2 has also been reported by Lustig, Ruff, and Colburn,² but, as in the other cases, the nature of the transition state was not defined.

When a Lewis acid containing only hydridic hydrogen (*i.e.*, BH₃) is used in place of a Brønsted-Lowry acid, the complex $F_2PPF_2 \cdot BH_3$ is formed. The reaction can be described by the equation

$$P_2F_4(g) + 0.5B_2H_6(g) \xrightarrow{25^\circ} P_2F_4 \cdot BH_3(g)$$

No evidence for a double adduct has yet been obtained

(2) M. Lustig, J. K. Ruff, and C. B. Colburn, ibid., 88, 3875 (1966).

mission. (2) J. J. Katz and G. T. Seaborg, "The Chemistry of the Actinide Elements," John Wiley and Sons, Inc., New York, N. Y., 1957.

^{(1) (}a) Reaction of F_2PH with HI to give F_2PH HI has also been noted: R. W. Rudolph, Ph.D. Dissertation, University of Michigan, 1966; (b) R. W. Rudolph, R. C. Taylor, and R. W. Parry, J. Am. Chem. Soc., 88, 3729 (1966).

under the conditions used here. $F_2PPF_2 \cdot BH_3(g)$ is relatively stable but undergoes slow decomposition involving both cleavage of the P-P bond and shift of a fluorine. The equation describing the process is

$F_2PPF_2 \cdot BH_3 \longrightarrow F_3PBH_3(g) + PF(s)$

The solid yellow $(PF)_n$ is presumably polymeric. No evidence for decomposition to $P_2F_4(g)$ and $B_2H_6(g)$ was observed. It is also significant that F_2PPF_2 , in sharp contrast to the related fluorides of nitrogen,³ reacts smoothly and nonexplosively with diborane.

A 1.03-mmole sample of B_2H_6 (Callery Chemical Co.) was frozen into a 50-ml bulb on the vacuum line. A 1.04-mmole sample of $P_2F_4^1$ was frozen into a second evacuated 250-ml bulb, connected to the first bulb through a stopcock. With the stopcock closed between the two, the P_2F_4 and B_2H_6 were allowed to vaporize and warm to room temperature. The vapors were then allowed to mix by opening the stopcock between the units. After 3-4 hr at 25°, the gaseous mixture was passed through traps held at -85, -100, and -196° . The $P_2F_4 \cdot BH_3$ retained in the -100° trap was further purified by opening the -100° trap to a -196° trap for 20-36 hr. The product, a white crystalline solid at -100° , represented a 30% conversion of P_2F_4 to $P_2F_4 \cdot BH_3$. The molecular weight as determined by vapor density was 155 (calculated for F_4P_2 BH₃: 152); H⁻ (by hydrolysis in acid solution): $3.1H^{-}/P_{2}F_{4} \cdot BH_{3}$. Vapor pressure data were not obtained because of decomposition in the liquid phase to PF_3BH_3 and its decomposition products, but the product is sufficiently volatile to pass through a trap at -85° .

Major mass spectrometer peaks given as mass number (tentative assignment) and relative abundance are: 152 $(P_2F_4 \cdot BH_3^+)$, 1.67; 138 * $(P_2F_4^+)$, 8.15; 119 * (P_2^-) F_{3}^{+}), 5.71; 83 ($F_{2}PBH_{3}^{+}$), 8.05; 82 ($F_{2}PBH_{2}^{+}$), 11.0; 81 ($F_2P^{10}BH_2^+$ and $F_2P^{11}BH^+$), 3.43; 80 ($F_2P^{10}BH^+$), 1.55; 69 *(F_2P^+), 100; 50 *(PF^+), 24.5; and 31 *(P^+), 25.6. Much of the pattern (marked by an asterisk) is identical with that for P_2F_4 . The over-all pattern is consistent with the formula assigned. Infrared absorptions are listed as [frequency, cm⁻¹ (probable assignment), and intensity]: 2432 (ν_{B-H}), m br; 1102 (δ_{B-H}) , w; 1042 (δ_{B-H}) , m; 902 $(\nu_{as, P-F})$, vvs br; 850 ($\nu_{sym,P-F}$), s; 727 (ρ_{BH_i}) m; 670–680 (?), w, br; 598 (ν_{P-B} ?), w; 442 (δ_{F-PF}), vw, 395 (τ_{B-P}), w; 370 (δ_{F-P-F}) , wm. The spectrum of the solid shows resolution of the B-H stretching region near 2400 cm⁻¹ into two distinct peaks as expected. (The symbols used above are defined as follows: $\nu =$ stretch, $\delta =$ deformation, ρ = rocking, τ = torsional.) The ¹¹B nmr taken at -80° on the neat liquid shows a quartet with $J_{B-H} = 101$ cps and δ (relative to B- $(OCH_3)_3$) equal to 60 ppm.

No splitting of the ¹¹B signal by phosphorus is observed, whereas other compounds containing a B–P bond of comparable stability show a definite doublet pattern.² Broadening of the ¹¹B signal suggests that rapid exchange of the BH₃ moiety between phosphorus atoms might be occurring. More detailed analysis of the ¹H, ¹⁹F, and ³¹P spectra is currently being carried out. P_2F_4 appears to be stronger as a Lewis base toward BH₃ than is PF₃; slow decomposition of $P_2F_4 \cdot BH_3$ by fluoride shift and cleavage of the P-P bond gives F_3PBH_3 which then decomposes to give significant concentrations of F_3P and B_2H_6 . On the other hand, no P_2F_4 was ever detected in the system during decomposition, and B_2H_6 appeared only after the appearance of F_3PBH_3 . These observations suggest that the B-P interaction in the adduct may be enhanced by partial double-bond interaction between phosphorus atoms in the parent P_2F_4 . Such interaction would enhance the basicity of one phosphorus atom at the expense of the other and in a manner which contrasts sharply with the basicity toward BH₃ of other bidentate ligands such as hydrazine.

Acknowledgment. Support of this work through a NASA traineeship held by K. W. M. is gratefully acknowledged.

> Karen W. Morse, Robert W. Parry Department of Chemistry, University of Michigan Ann Arbor, Michigan 48104 Received November 4, 1966

Crystalline Catalysts Containing Al-O-Al or Zn-N-Zn Groups for Stereospecific Polymerization of Propylene Oxide

Sir:

Since the pioneering work by Price on the stereospecific polymerization of propylene oxide,¹ a large number of papers dealing with the mechanism of the polymerization as well as with the nature of catalysts have been published.² But, unfortunately, the illdefined nature of catalysts and the rather low stereospecificity of polymerization make the detailed interpretation of the stereoregulating mechanism difficult. We now wish to report two types of crystalline catalyst for stereospecific polymerization of propylene oxide.³ These catalysts are the organometallic compounds, one containing aluminum and oxygen and another zinc and nitrogen.

Bis(diethylaluminum) oxide (Et₂AlOAlEt₂, II) has been mentioned as one of the reaction products of triethylaluminum with carbon dioxide⁴ or with water,⁵ but has not been isolated in a pure form. It was found, by a new route according to eq 2, that exactly equimolar amounts of lithium diethylaluminate (Et₂-AlOLi, I)⁶ reacted in toluene at low temperature with diethylaluminum chloride to give bis(diethylaluminum) oxide (Et₂AlOAlEt₂, II) accompanied by the precipitation of lithium chloride in a quantitative amount.⁷ This oily product disproportionated to

(1) C. C. Price and M. Osgan, J. Am. Chem. Soc., 78, 690, 4787 (1956).

(2) J. Furukawa and T. Saegusa, "Polymerization of Aldehydes and Oxides," Interscience Publishers, Inc., New York, N. Y., 1963, pp 125-208; A. E. Gurgiolo, *Rev. Macromol. Chem.*, 1, 76 (1966).

(3) All experiments described in this paper were done under an atmosphere of nitrogen or argon.

(4) K. Ziegler, Angew. Chem., 68, 721 (1956); K. Ziegler, F. Krupp,
K. Weyer, and W. Larbig, Ann., 629, 251 (1960).
(5) S. Ishida, J. Polymer Sci., 62, 10 (1962); T. Saegusa, Y. Fujii,

(5) S. Ishida, J. Polymer Sci., 62, 10 (1962); T. Saegusa, Y. Fujii, H. Fujii, and J. Furukawa, Makromol. Chem., 55, 232 (1962); G. B. Sakharovskaya, N. N. Korneev, A. F. Popov, E. I. Larikov, and A. F. Zhigach, Zh. Obshch. Khim., 34, 3435 (1964).

(6) H. Tani, T. Araki, N. Oguni, and T. Aoyagi, J. Polymer Sci., B4, 97 (1966).

(7) H. Tani, T. Araki, and T. Aoyagi, presented at the 13th Annual Meeting of the Society of High Polymers, Japan, May 2, 1965, Tokyo.

⁽³⁾ T. C. Bissot and R. W. Parry, J. Am. Chem. Soc., 78, 1524 (1956). No reaction of N_2F_4 with B_2H_6 is reported in the literature, but the above reference indicates an explosive reaction of NF_8 and B_2H_6 .